A typical corporate bond has:

- a face value of $1,000, which is paid to the holder of the bond at maturity
- a stated rate of interest (often called the coupon rate), which is a percent of the face value and is paid in semi-annual payments
- a maturity of 10 to 30 or more years - number of years interest is paid

For example, a 20-year, 10% coupon bond would:
- Pay 10% of $1,000, or $100, per year in interest, in two installments of $50 every 6 months
- Pay the face value of $1,000 at maturity in 20 years

Thus, the owner of this bond would receive 40 semi-annual interest payments of $50 plus $1,000 at the end of those 40 semi-annual periods (20 years)

The value of the bond, like any asset, is the present value of the future stream of cash benefits to be received. That is,

\[
VB = \frac{1-(1+i)^n}{i} \times C + \frac{(1+i)^n}{i} \times F
\]

where, C = semi-annual coupon payment in $
and F = Face value of bond ($1,000)
For our 20-year bond, 10% coupon:

If Market Demands to Earn 10%, the present value of the future benefits is

\[VB = \frac{1-(1+.05)^{-40}}{.05} \times 50 + (1+.05)^{-40} \times 1000 \]
\[VB = 17.159 \times 50 + .14245 \times 1000 \]
\[VB = 857.95 + 142.05 = $1,000.00 \]

If Market Demands to Earn 12%

\[VB = \frac{1-(1+.06)^{-40}}{.06} \times 50 + (1+.06)^{-40} \times 1000 \]
\[VB = 15.046 \times 50 + .09722 \times 1000 \]
\[VB = 752.23 + 97.22 = $849.53 \]

If Market Demands to Earn 8%

\[VB = \frac{1-(1+.04)^{-40}}{.04} \times 50 + (1+.04)^{-40} \times 1000 \]
\[VB = 19.972 \times 50 + .20828 \times 1000 \]
\[VB = 989.64 + 208.29 = $1,197.93 \]

Bonds that sell below Face sell at a discount
Bond that sell above Face sell at a premium
BOND YIELD COMPOSITION

Bonds have three (3) rates associated with them:

(1) Coupon Rate = percent of face value in interest to be paid each year
(2) Current Yield = (Annual Interest)/Price
 Lets you know the return you receive each year
(3) Yield to Maturity = return earned on bond held until it matures

The return on a bond can come in two ways, either along the way or at maturity. So, the total reward is

\[\text{YTM} = \text{Current Yield(CY)} + \text{Capital Gains/Loss Yield(CGY)} \]

For a bond selling at a discount: our 10% bond selling to yield 12%

\[\frac{100}{849.53} + \text{CGY} = 12\% \]
\[11.77 + .23 \]

Thus, the 12% yield to maturity is composed of 11.77% received along the way plus .23% percent in capital gains yield (you get back at maturity $150.47 more than you paid for the bond)

For a bond selling at a premium: our 10% bond selling to yield 8%

\[\frac{100}{1197.93} + \text{CGY} = 8\% \]
\[8.35 - .35 \]

Thus, the 8% yield to maturity is composed of 8.35% received along the way minus .35% in capital loss yield (you get back at maturity $197.93 less than you paid for the bond)

For a bond selling at face value: our 10% bond selling to yield 10%

\[\frac{100}{1000} + \text{CGY} = 10\% \]
\[10\% + 0 \]
Thus, the 10% yield to maturity is composed of 10% received along the way plus no capital gains yield (you get back at maturity the same amount that you paid for the bond)

For premium bonds:

\[\text{coupon rate} > \text{current yield} > \text{YTM} \]

For discount bonds:

\[\text{coupon rate} < \text{current yield} < \text{YTM} \]

For par value bonds:

\[\text{coupon rate} = \text{current yield} = \text{YTM} \]
BOND YIELD TO MATURITY

Annual Rate of Return Earned on a Bond if Held Until Maturity

For the 20-year, 10% coupon Bond Selling for $920, Calculate the YTM

\[920 = \frac{1-(1+i)^{-40}}{i} \times 50 + (1+i)^{-40} \times 1000 \]

Need to Solve for \(i \), must choose a value for \(i \), plug it into right-hand side and determine if it gives a present value of 920. If not, must raise, or lower, the rate until an \(i \) is found that gives the 920 present value.
BOND PRICING THEOREMS

1) Bond prices and bond yields move in opposite directions. As a bond’s yield increases, its price decreases. Conversely, as a bond’s yield decreases, its price increases.

2) For a given change in a bond’s YTM, the longer the term to maturity of the bond, the greater will be the magnitude of the change in the bond’s price.

3) For a given change in a bond’s YTM, the size of the change in the bond’s price increases at a diminishing rate as the bond’s term to maturity lengthens.

4) For a given change in a bond’s YTM, the absolute magnitude of the resulting change in the bond’s price is inversely related to the bond’s coupon rate.

5) For a given absolute change in a bond’s YTM, the magnitude of the price increase caused by a decrease in yield is greater than the price decrease caused by an increase in yield.
BOND PRICE BEHAVIOR

DURATION

\[
\text{Modified duration} = \frac{\text{Macaulay duration}}{\left(1 + \frac{\text{YTM}}{2}\right)}
\]

A measure of a bond’s sensitivity to changes in bond yields. The original measure is called Macaulay duration.

\%Δ in bond price ≈ −Modified duration×Δ in YTM
BOND PRICE BEHAVIOR

DURATION

A measure of a bond’s sensitivity to changes in bond yields. The original measure is called Macaulay duration.

<table>
<thead>
<tr>
<th>Years</th>
<th>Cash Flow</th>
<th>Discount Factor</th>
<th>Present Value</th>
<th>Years × Present Value + Bond Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>$40</td>
<td>.96154</td>
<td>$38.4615</td>
<td>.0192 years</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>.92456</td>
<td>36.9822</td>
<td>.0370</td>
</tr>
<tr>
<td>1.5</td>
<td>40</td>
<td>.88900</td>
<td>35.5599</td>
<td>.0533</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>.85480</td>
<td>34.1922</td>
<td>.0684</td>
</tr>
<tr>
<td>2.5</td>
<td>40</td>
<td>.82193</td>
<td>32.8771</td>
<td>.0822</td>
</tr>
<tr>
<td>3</td>
<td>1040</td>
<td>.79031</td>
<td>$821.9271</td>
<td>2.4658</td>
</tr>
</tbody>
</table>

$1,000.00 Bond Price $2,7259 years Bond Duration

\[
\text{Modified duration} = \frac{\text{Macaulay duration}}{\left(1 + \frac{\text{YTM}}{2}\right)}
\]

\[
\% \Delta \text{ in bond price} \approx -\text{Modified duration} \times \Delta \text{ in YTM}
\]
Immunization

• Used to protect a bond portfolio against interest rate risk
 – Price risk and reinvestment risk cancel
• Price risk results from relationship between bond prices and rates
• Reinvestment risk results from uncertainty about the reinvestment rate for future coupon income
Immunization

• Risk components move in opposite directions
 – Favorable results on one side can be used to offset unfavorable results on the other

• Portfolio immunized if the duration of the portfolio is equal to investment horizon
 – Like owning zero-coupon bond
DEMONSTRATION OF HOW DURATION AND INTEREST RATE RISK ARE RELATED

<table>
<thead>
<tr>
<th>Invest</th>
<th>FV factor at 10% for</th>
<th>FV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7355 yr</td>
<td></td>
<td>1000 1.29787 1297.87</td>
</tr>
</tbody>
</table>

10% 3 years

<table>
<thead>
<tr>
<th>Cashflow</th>
<th>PV factor</th>
<th>PV</th>
<th>PV x t</th>
<th>PV/(PVxt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.909091</td>
<td>90.90909</td>
<td>90.90909</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.826446</td>
<td>82.64463</td>
<td>165.2893</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>0.751315</td>
<td>826.4463</td>
<td>2479.339</td>
<td></td>
</tr>
</tbody>
</table>

Immediately after purchase rate increases to 12%

100	1.217362 121.7362
100	1.08693 108.693
1100	0.970473 1067.521

1297.95